Well all things (human) in space have special paint in order to modify their blackbody radiation and maintain a trade off between disipation heat by EM radiation and keeping a temperature that allows semiconductors to work.
The point is that satellites do disipate heat. Convection disipation is the worst disipation of heat. The best disipation of energy (heat) is by radiation. Thats why the thermal blankets look shinny weird, just like the satellites. You would need a realiable source of heat in order to overcome the satellite disipation and saturate the satellite.
isnt that untrue though given that objects freeze instantly in space? Also that would mean you would only need to heat the ISS (rip) once, during its conception.
What mariusafa said is correct, but I wanted to point out that objects in space do not freeze immediately. Dissipation via blackbody radiation is much slower than convection and it can take a long time for something to cool down without the latter. In other words, a vaccuum does function as a very effective insulator, which can sometimes make it more challenging to get rid of heat in space than it is to keep something warm. The ISS, for example, needs to use radiators to keep cool. The same goes for many (most? all?) satellites that are at least as close to the sun as the earth.
It’s just not true. Disipation by convection effect is one of the ways of disipating energy. Dissipation by blackbody radiation is where most of the energy goes.
For example infrared heaters transmits most of it’s heat by radiation. Efficient heaters do not use convection mechanisms, well or not only.
Satellite is surrounded by vacuum. Thus insulated from getting rid of heat that way. So just pump heat into it and watch the temperature rise.
And you don’t need to melt it. Just cook it till its electronics overheat.
I disagree, you need to melt it, because space is more interesting when its full of lances of molten metal whipping about at orbital speeds
Well all things (human) in space have special paint in order to modify their blackbody radiation and maintain a trade off between disipation heat by EM radiation and keeping a temperature that allows semiconductors to work.
The point is that satellites do disipate heat. Convection disipation is the worst disipation of heat. The best disipation of energy (heat) is by radiation. Thats why the thermal blankets look shinny weird, just like the satellites. You would need a realiable source of heat in order to overcome the satellite disipation and saturate the satellite.
i’ve never thought about that before.
isnt that untrue though given that objects freeze instantly in space? Also that would mean you would only need to heat the ISS (rip) once, during its conception.
What mariusafa said is correct, but I wanted to point out that objects in space do not freeze immediately. Dissipation via blackbody radiation is much slower than convection and it can take a long time for something to cool down without the latter. In other words, a vaccuum does function as a very effective insulator, which can sometimes make it more challenging to get rid of heat in space than it is to keep something warm. The ISS, for example, needs to use radiators to keep cool. The same goes for many (most? all?) satellites that are at least as close to the sun as the earth.
It’s just not true. Disipation by convection effect is one of the ways of disipating energy. Dissipation by blackbody radiation is where most of the energy goes.
For example infrared heaters transmits most of it’s heat by radiation. Efficient heaters do not use convection mechanisms, well or not only.