How can air get heat saturated? i followed you thus far but its not like humidity, you can always add more heat the question is if a faster flow decrease the time for each molecule to absorb the heat/motion and thats why sometimes higher flow wont yield in better cooling
Sorry, saturation is not the right word to describe it. I was thinking of the ice/water analogy and I mistakenly applied it to my heatsink analogy.
The correct limit to the heatsink analogy would a function of the thermal dissipation of the heatsink (material, surface area, thermal resistance) and the qualities of the surrounding fluid (ambient temp, flow, etc). Honestly, my comparison between the ice/water example and heatsinks is not good. It is only appropriate in reference to the “molecular collisions” concept I mentioned before.
How can air get heat saturated? i followed you thus far but its not like humidity, you can always add more heat the question is if a faster flow decrease the time for each molecule to absorb the heat/motion and thats why sometimes higher flow wont yield in better cooling
Sorry, saturation is not the right word to describe it. I was thinking of the ice/water analogy and I mistakenly applied it to my heatsink analogy.
The correct limit to the heatsink analogy would a function of the thermal dissipation of the heatsink (material, surface area, thermal resistance) and the qualities of the surrounding fluid (ambient temp, flow, etc). Honestly, my comparison between the ice/water example and heatsinks is not good. It is only appropriate in reference to the “molecular collisions” concept I mentioned before.
F me I forgot the beer in the freezer
When the temperature of the air and temperature of the object you want to cool reach an equilibrium, no heat gets transfered anymore.
That is equilibrium not saturation.